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Résumé
Le myélome nécessite un suivi à long terme et se carac-
térise par des phases de rémission et de rechute, pendant
lesquelles un marqueur est surveillé et sert de base à une
politique de traitement. Nous modélisons la dynamique du
marqueur par un Processus Markovien Déterministe par
Morceaux contrôlé à observations bruitées, espace d’état
continu et à modèle partiellement connu et nous proposons
une nouvelle méthode de contrôle pour ce PDMP. Nous
transformons ce problème en Processus de Décision Mar-
kovien Partiellement Observé à espace d’état continu, sur
lequel nous mettons en oeuvre un algorithme d’apprentis-
sage par renforcement profond. Nous montrons expérimen-
talement sur des trajectoires de marqueur simulées que cet
algorithme permet une prise de décision efficace.

Mots-clés
Processus Markovien Déterministe par Morceaux, Pro-
cessus de Décision Markovien Partiellement Observé,
Contrôle Stochastique, Apprentissage par Renforcement
Profond, Optimisation de Traitement.

Abstract
Myeloma requires long-term follow-up and is characterized
by phases of remission and relapse, during which a marker
is monitored and serves as the basis for a treatment policy.
We model the dynamics of the marker by a controlled Pie-
cewise Deterministic Markov Process with noisy observa-
tions, continuous state space and a partially known model
and we propose a new control method for this PDMP. We
suggest a transformation of this problem into a continuous
state space Partially Observable Markov Decision Process,
on which we implement a deep reinforcement learning algo-
rithm. We show experimentally on simulated marker trajec-
tories that this algorithm allows effective decision-making.

Keywords
Piecewise Deterministic Markov Process, Partially Obser-
vable Markov Decision Process, Stochastic Control, Deep
Reinforcement Learning, Treatment Optimisation.

1 Introduction
Patients suffering from long-term illnesses such as mye-
loma alternate between phases of remission and relapse.
Their follow-up includes regular blood tests to measure a
specific biomarker, among other variables. Although seve-
ral variables are monitored, in this paper, we focus on sim-
plified treatment decisions based solely on this specific bio-
marker. These indirect and noisy measurements often lack
detailed knowledge of the dynamics of the process, which
vary from patient to patient. While medical steps facili-
tate follow-up decisions, personalized criteria still need to
be established for better personalised patient management.
This requires a precise understanding of disease dynamics
and reliable predictive algorithms. It is crucial to develop
a model capable of representing the biomarker dynamics
for all patients, while also being adaptable with patient-
specific parameters. Additionally, online adaptive models,
which adjust treatment as each new data is observed, are
essential for relapse prediction and treatment automation.
Piecewise Deterministic Markov Processes (PDMPs) are
non-diffusive hybrid stochastic processes, that handle conti-
nuous and discrete variables in continuous time. PDMPs
are characterized by deterministic motion punctuated by
random jumps at random times, making them suitable for
modelling systems where change occurs both continuously
and at discrete points in time. They are thus simple to si-
mulate and easy to interpret [7]. Controlled PDMPs ex-
tend the concept of PDMPs by introducing the capability
for decision-making in continuous time. This means that
in controlled PDMPs, an external controller influences the
system dynamics by making decisions that affect both the
deterministic paths and the timing or nature of the jumps.
Our focus centres on the computational resolution of a spe-
cific category of impulse control problems for PDMP. Im-
pulse control for PDMPs involves selecting actions and in-
tervention dates [6]. Finding the optimal treatment decision
in continuous-time and continuous-state impulse control
problems, especially when the process is only partially ob-
served, presents a significant challenge. It is even more
challenging when jump times remain hidden and the un-
derlying model is partially unknown and can only be simu-



lated. Previous approaches [3, 4], propose to formulate the
controlled PDMP problem as a Partially Observable Mar-
kov Decision Process (POMDP). Then they resort to discre-
tizing the belief state space of the POMDP and employing
dynamic programming to approximate the value function,
in order to address continuous state space and partial ob-
servability. While effective (even though computationally
intensive), this method is constrained by its reliance on ex-
plicit model knowledge and the discretization process. Ap-
proximation algorithms were developed for POMDP with
discrete state space and an unknown model (e.g. [2]) but
these approaches generally require some knowledge of a
good policy class, as well as substantial amounts of data.
An alternative strategy [5, 12] adopts a simulation-based
approach based on Monte-Carlo planning, that also handles
continuous state space.
In this paper, we propose a new solution approach based
on Deep Reinforcement Learning (DRL) [13]. While of-
fering generalization capabilities, our approach allows to
learn a control policy by interacting with a simulator of
the model. As in previous work, we transform the control-
led continuous-time PDMP problem into a discrete-time
POMDP. Then, given the complex observation space of
this discrete-time POMDP, composed of both discrete and
continuous variables, we employ the Deep-Q-Network al-
gorithm (DQN) [11, 9, 14] to solve it, thereby avoiding any
discretization of the observation space.

2 Cancer treatment follow-up mo-
dels

In our medical scenario, a patient enrols in a clinical trial
for a time H at the onset of a remission phase. Throughout
remission, the biomarker hovers at the nominal threshold
ζ0. In the absence of treatment, a relapse triggers an ex-
ponential surge in the biomarker level, culminating in the
patient’s death upon reaching the critical value of D. Treat-
ment interventions succeed in lowering the biomarker le-
vel, yet with each relapse, the probability of treatment re-
sistance escalates. This intricate interplay involving phases
of remission, relapse, and treatment response constitutes the
fundamental essence of our impulse control problem. Our
investigation starts with delineating a specialized class of
impulse control problems designed for Piecewise Determi-
nistic Markov processes (PDMPs), a model initially propo-
sed in [5]. Specifically, we consider the scenario where the
spread of cancer relapse is treated as unknown, adding a
layer of complexity to the problem. We describe the trans-
lation of our control problem into a Partially Observable
Markov Decision Process (POMDP) framework.

2.1 Piecewise Deterministic Markov Process
We consider an impulse control problem for hidden piece-
wise deterministic Markov processes (PDMPs). The mode
(m, k) corresponds to the patient’s overall state of health
(m = 0 : remission, m = 1 : relapse, m = 2 : non-
curable relapse, m = 3 : death) and k ∈ N (the number
of curable relapses). The biological marker level is deno-

ted by ζ ∈ [ζ0, D] with ζ0 the nominal value and D the
death level and u ∈ [0, H] is the sojourn time in a heal-
th’ state (added for technical reasons to deal with semi-
Markov condition), where H corresponds to the end of
the patient’s follow-up. Let the state space E be E ⊂
{0, 1, 2, 3}×N× [ζ0, D]× [0, H]. The complete state of the
patient is denoted by x = (m, k, ζ, u) in E the state space.
Decisions are made throughout a patient’s trajectory. Let D
be the space of decisions such that D = L × R ∪ {∆}.
Control is expressed as a decision pair : d = (ℓ, r), where
r ∈ R = {15, 30, 60} is the delay (prescribed by the
doctor) until the next visit. Visits correspond to the bio-
marker level measurement and the adjustment of the treat-
ment according to the results. The therapeutic choice is
ℓ ∈ L = {∅, a, b} (ℓ = ∅ : no treatment, ℓ = a : che-
motherapy and ℓ = b : palliative care). The decision d = ∆
corresponds to the action do nothing and applies only when
the patient is dead.
A PDMP on the state space E is defined by three local cha-
racteristics (Φ, λ,Q). The flow Φ describes the determi-
nistic trajectory of the process between jumps. It depends
on the control applied and in particular on the treatment :
Φℓ(x, t) = (m, k,Φℓ

m,k(ζ, t), u+ t), where :

Φℓ
m,k(ζ, t) = ζev

ℓ
m,kt

describes only the trajectory of the biological marker bet-
ween jumps. When the patient is dead, no treatment is ap-
plied and the flow is Φ∆(x, t) = (3). The biomarker evo-
lution depends on the therapy choice, the disease regimen
and the number of relapses.
Let tℓ⋆(x) be the deterministic time the flow takes to reach
the boundary of the state space E. Let ∂E = {1, 2} × N ×
{ζ0, D} × (0, H] be the boundary on E. The time tℓ⋆(x)
also depends on the treatment and the disease regimen :

tℓ⋆m,k(ζ) = inf{t > 0 : Φℓ
m,k(ζ, t) ∈ ∂E}

In PDMP, a jump refers to a sudden and instantaneous
change in the state of the system. The jump intensity λ
quantifies the frequency at which these jumps occur. Treat-
ment also influences the risk function λℓ(x) = λℓ

m,k(ζ, u).
Notably, there are two distinctive types of relapse scenarios
considered : standard relapses occurring during remission
phases and relapses indicative of therapeutic escape. For
standard relapses, the probability of occurrence increases
with the duration of time spent in remission. On the other
hand, the risk of relapses associated with therapeutic escape
is influenced by the biomarker level. In light of these consi-
derations, we choose a Weibull distribution of the form :
f0→m′(u) = (αm′u)βm′ and f1→2(ζ) = (α′ζ)β

′
.

The Markov kernel Q provides a probabilistic mapping
from the pre-jump state to the post-jump state. In remission,
the patient may transition to either a curable relapse in the
absence of chemotherapy or to an incurable relapse. Incu-
rable relapse occurs when cancer cells become resistant to
chemotherapy. In the case of relapse and without treatment,
the biomarker increases to the critical value D, leading to
the patient’s death. When chemotherapy is administered,



the biomarker decreases to ζ0 and returns to remission. Re-
gardless of the treatment chosen, therapeutic escape may
occur at any time. In the case of therapeutic escape, the bio-
marker increases, regardless of the administered treatment,
toward the D threshold, ultimately resulting in the patient’s
death. When patients are dead, no jumps occur anymore.
Let P(x, d)(x′) be the transition kernel associated with the
continuous-time PDMP. The transition kernel of the PDMP
combines the deterministic flow, the jump intensity and the
Markov kernel. However, due to its extensive nature, de-
tailed analytic formulas will not be included in this paper,
but it is worth noting that they allow the kernel to be si-
mulated easily. After initialization in a known initial state
xt = (0, 0, ζ0, 0) ∈ E at time t = 0, the simulation of
the PDMP proceeds as follows. At each decision point, an
agent selects a decision d = (ℓ, r). The next visit point xt+r

is then simulated based on the selected treatment ℓ. This si-
mulation involves updating the biomarker ζ according to
the deterministic flow, checking if any jump occurs before
the next visit and, if so, simulating a post-jump location ac-
cording to the Markov kernel. This process iterates until the
simulation horizon is reached.

2.2 Partially Observable Markov Decision
Process

The trajectory of the process defined above depends on the
sequence of decisions and the dates on which the decisions
are made. We assume that visits take place at discrete dates
n0 = 0, n1, ..., nk, where the time lapse between two visits
can be 15, 30 or 60 days. At most N = H

15 visits can oc-
cur. Moreover, decision-related constraints appear. The last
visit must take place at the end H of the follow-up 1. The
variable t ∈ [0, H] indicates the time elapsed since the start
of the trajectory. In addition, treatment must be applied for
a minimum of 45 days [1]. The variable τ ∈ [0, H] cor-
responds to the time since treatment (chemotherapy or pal-
liative care) was administered. It can be shown that the im-
pulse control problem described above can be formalized as
a discrete-time partially observed Markov decision process
(POMDP).
A POMDP is a tuple (S,Ω,D,K, T , C).
The state space S corresponds to the hidden state of a pa-
tient s = (m, k, ζ, u, t, τ) in S ⊂ E × [0, H]2 ∪ {3}.
Blood measurements are intrinsically subject to variations
independent of the medical condition. These fluctuations
can be attributed to measurement errors, natural variations,
and external influences. The biomarker is thus observed
through a multiplicative noise as the biomarker is growing
exponentially. Let y = ζeϵ with ϵ ∼ N (0, 1) be the
noisy biomarker. In addition, the patient’s overall health
is not observed, except when the patient is deceased. Let
z = 1(m=3) be the death indicator. At a given time t, the
observation of a patient’s condition is ω = (τ, t, y, z) with
ω ∈ Ω. The observation space is Ω ⊂ [0, H]2 × R+ ×
[0, H]× {1}.
The decision space D remains unchanged.

1. We assume H is a multiple of 15.

K(ω) ⊆ D is the space of admissible decisions in obser-
vation ω. It is used to specify all allowed actions state by
state : K(ω) = {d ∈ D; (ω, d) ∈ K} ̸= ∅. Constraints are
only defined by observations.

K(ω) =


{∆} if z = 1 or t = H

(ℓ, r) ∈ {a, b} ×R if τ ∈ (0, 45) and t+ r ≤ H

(ℓ, r) ∈ L ×R such that t+ r ≤ H

The POMDP joint transition-observation function of a
state-observation tuple (s, ω) ∈ S × Ω to state-observation
tuple (s′, ω′) ∈ S × Ω when action d ∈ K(ω) is taken is
denoted by T (s, ω, d)(s′, ω′). It can be expressed as a func-
tion of P(x, d)(x′) the piecewise deterministic Markov pro-
cess (PDMP) transition kernel. This means it can be written
as a combination of PDMP flow, jump intensity and Markov
kernel. Detailed analytic formulas are omitted here, but no-
tice that the POMDP joint transition-observation function
is set according to the PDMP parameters. It’s worth men-
tioning that even if these parameters are unknown, they can
be simulated using various techniques, based on real data,
for instance. Therefore, the POMDP transition-observation
function can be constructed based on simulated data, en-
abling the application of reinforcement learning techniques
despite the uncertainty surrounding the true parameters.
Let C be the non-negative cost-per-stage function such that
C : D× S → R+. In POMDPs, the cost function quantifies
the cost associated with different decisions per stage. Cost
function details are provided in section 4.2.
A history is a sequence of observations and decisions hn =
{ω0, d0, ω1, · · · , ωn} and Hn is the set of histories of size
n. Along a trajectory, the agent applies decision rules which
map a history to an appropriate decision. Let fn : Hn → K
be a decision rule for the nth visit such that for all hn in
Hn we have fn(hn) in K(ωn). We define an admissible
policy π as a sequence of decision rules π = (fn)0:N−1

and Π the set of all admissible policies. Then, the total
cumulated cost from visit n is defined as follows Cn =∑N−1

k=n C(Dk, Sk+1).
The value function V π(hn) = Eπ[Cn|h = hn] is the ex-
pected total cumulated cost, starting from history hn ∈ Hn

when following policy π. Our next objective is to obtain an
optimal policy π⋆ such that the value function V is optimal :
V ⋆(h) = minπ∈Π V π(h) for all h ∈ H.
Since we assume the existence of a trajectory simulator,
the application of Reinforcement Learning (RL) methods
emerges as a sensible choice. However, considering the
complexity of the state space (hybrid discrete and conti-
nuous) and the partial observability of the state, turning to
deep RL strategies seems compulsory.

3 Deep reinforcement learning solu-
tion Strategies

Reinforcement Learning (RL) methodologies can be
broadly categorized into two principal families : value lear-
ning and policy learning approaches. These approaches di-
verge in their strategies for addressing sequential decision



problems. Value learning focuses on assessing and enhan-
cing the value function associated with a given policy, ai-
ming to identify the optimal value for each state. On the
other hand, policy learning directly updates the policy, de-
termining the optimal sequence of actions for each state.
Notably, policy learning often achieves faster convergence.
However it generally results in stochastic policies, while
value-based approaches ensure a deterministic policy. This
is a crucial requirement in cancer monitoring and treat-
ment, since doctors and patients are reluctant to apply non-
deterministic treatment strategies.
Deep Q-Network (DQN) [11] represents a state-of-the-art
approach for handling Markov Decision Processes (MDPs)
with continuous state spaces. While DQN can also be ap-
plied to Partially Observable Markov Decision Processes
(POMDPs), its inability to handle historical data may limit
its performance (see concluding remarks). However, this is
a good starting point approach, which we adopt here.

4 Experimental evaluation of DQN
for cancer treatment

4.1 Implementation details
For the evaluation, we implemented a Gymnasium 2 compa-
tible RL environment in Python to simulate the trajectories
of the cancer treatment follow-up POMDP model (presen-
ted in Section 2.2). For the DQN algorithm, we used the
implementation available in RLlib 3, an open-source Python
library specialized in the evaluation of Deep Reinforcement
Learning (DRL) algorithms. Our experiments code and data
are available in a GitLab repository 4.

4.2 The cost function
Our objective is to choose the best available treatment and
the best next-visit date to minimize the long-term impact on
the patient’s quality of life. This is achieved through desi-
gning a cost function encoding the diverse short-term im-
pacts of each treatment. Designing such a cost function is
in itself a difficult task. Recall that s = (m, k, ζ, u, t, τ) and
let s′ = (m′, k′, ζ ′, u′, t′, τ ′) and d = (ℓ, r). We propose to
use the following cost function definition :

C(s, d, s′) = CV +κ|ζ ′ − ζ0|r + βr1ζ=ζ0,ℓ̸=∅ + CD1ζ′=D

as defined in [5], where CV is a visit cost, κ is a non-
negative scale factor penalizing high marker values, β is
a penalty for applying an unnecessary treatment, r is the
treatment duration and CD is the death cost.
In order to handle action constraints implicitly in DQN, we
extend the cost function, so that it returns large cost values
for invalid actions, as follows :

CK(s, d, s′) = C(s, d, s′) + LH1t′>H + TF 1ℓ=∅,0<τ<45

2. https://gymnasium.farama.org/index.html
3. https://docs.ray.io/en/latest/rllib/index.

html
4. https://forgemia.inra.fr/orlane.

le-quellennec/controlled_pdmp_po

Policy Mean Cost
Naive 55509.49± 1931.78
Threshold 5300.17± 173.31
Inactive 843.12± 101.92
DQN 978.17± 137.29

TABLE 1 – Policy evaluation performance on simulations

where LH is a cost for exceeding the horizon and TF pe-
nalizes stopping treatment too early. While calibrating cost
parameters CV , κ, β, and CD is a difficult task, LH and
TF parameters were simply set to arbitrary large values to
prevent forbidden actions.

4.3 Patient follow-up optimization
We applied the Deep Q-Network (DQN) algorithm and
three heuristic control approaches to the patient problem.
We evaluated the performance of each algorithm by the
average total cost incurred over 105 Monte-Carlo simula-
tions. To provide a performance comparison, we evaluated
the performance of three other arbitrary policies.
Naive policy consists of selecting decisions randomly (cor-
responding to our upper bound cost).
Threshold policy operates according to two last observa-
tions. If the estimated biomarker level falls below 5, no
treatment is applied, and the next visit is scheduled in 30
days. If the biomarker level is estimated to be between 5
and 25, chemotherapy is administered, and the next visit is
planned in 30 days too. If the biomarker level is estimated
to be above 25, palliative care is administered, and the next
visit is scheduled in 60 days.
Inactive policy consists of not administering any treatment
and scheduling a visit every 60 days.
Table 1 presents the performance evaluation of the different
policies on simulations. It is worth noting that the Inac-
tive policy serves as the lower bound cost and the Naive
policy serves as the upper bound cost for comparison pur-
poses. The DQN policy, which is the focus of the evalua-
tion, shows a mean cost of 978.17 with a confidence in-
terval spanning [840.88, 1115.46]. Interestingly, there is an
overlap between the confidence interval of the DQN po-
licy and that of the Inactive policy. This suggests that while
the DQN policy performs worse on average compared to
the Inactive policy, it still achieves comparable results wi-
thin a certain confidence range. These findings underscore
the potential of deep RL methods in decision-making pro-
cesses for patient follow-up. However, it is crucial to note
that our cost function needs to be parameterized differently,
as we do not intend for the Inactive policy, which refrains
from administering any treatment, to represent our optimal
policy.

5 Conclusion
In conclusion, monitoring and treatment of myeloma can
be modelled by a hidden controlled Piecewise Determinis-
tic Markov Process (PDMP). We reduce the problem into an
equivalent discrete-time Partially Observable Markov Deci-



sion Process (POMDP). We propose to employ deep Rein-
forcement Learning (DRL) to learn control policies for such
POMDP. DRL offers the advantage of not necessitating an
explicit model, only an environment capable of simulating
trajectories. Furthermore, by employing deep neural net-
works as function approximators, deep RL algorithms can
directly handle the complex observation space of the can-
cer follow-up problem without any discretization. Finally,
despite the partial observability inherent in POMDPs may
require policies that leverage the entire history (i.e., past
actions/observations) to be effective, the memoryless Deep
Q-Network (DQN) algorithm, seems effective (especially
compared to a threshold policy).

Of course, our experiments are really preliminary and
should be extended. Additionally, while the DQN policy
performs well in terms of cost, its decision-making process
lacks interpretability, necessitating additional investigation.
The subsequent phase of our research aims to compare
the performance of the memory-less DQN algorithm with
that of the Recurrent Replay Distributed DQN (R2D2) [10]
algorithm, an extension that considers histories by com-
bining DQN with a Long Short-Term Memory (LSTM).
We conjecture that this paradigm shift will yield improved
decision-making policies for cancer treatment, to the price
of a more complex representation of treatment policies (not
based on the current observation but potentially on a fill
history of treatment/observations).

The exploration of alternative modelling avenues remains
a compelling direction for future research. Incorporating
model knowledge and moving to a belief state formula-
ted MDP could be an interesting avenue. We hypothesize
that a more informative framework will lead to more ef-
ficient decision-making. Consequently, leveraging model-
based RL methods, particularly Bayesian RL [8], holds pro-
mise in learning the underlying model and policy more
effectively. By integrating prior knowledge about the sys-
tem dynamics and uncertainties into the learning process,
Bayesian RL approaches can provide more accurate predic-
tions and better decision-making capabilities. This avenue
of research could significantly enhance our understanding
of complex systems like the one described, paving the way
for more robust and efficient control strategies in the future.
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