Contrôle dynamique stochastique : une approche à base de modèles semi-Markov

Application à l'optimisation d'un traitement médical

Orlane Rossini ¹, Alice Cleynen ^{1,2}, Benoîte de Saporta ¹ et Régis Sabbadín ³ •

¹IMAG, Univ Montpellier, CNRS, Montpellier, France

²John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia

³Univ Toulouse, INRAE-MIAT, Toulouse, France

30 Novembre 2023

Le contexte médical

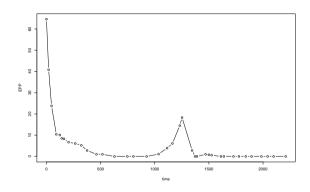


Figure: Exemple de données d'un patient^a

- Des patients ayant eu un cancer bénéficient d'un suivi régulier;
- La concentration d'immunoglobuline clonale est mesurée dans le temps;
- Le médecin doit prendre de nouvelles décisions à chaque visite.

^aIUCT Oncopole et CRCT. Toulouse. France

Le contexte médical

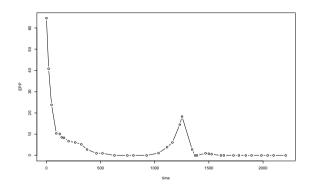
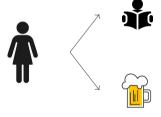


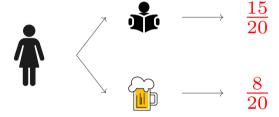
Figure: Exemple de données d'un patient^a

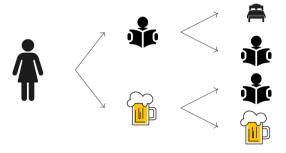
- Des patients ayant eu un cancer bénéficient d'un suivi régulier;
- La concentration d'immunoglobuline clonale est mesurée dans le temps;
- Le médecin doit prendre de nouvelles décisions à chaque visite.

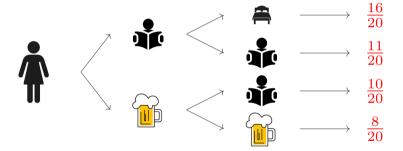
⇒ Contrôle dynamique stochastique

^aIUCT Oncopole et CRCT. Toulouse. France









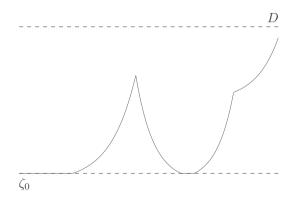
Sommaire

► Modélisation de la trajectoire d'un patient

▶ Problème partiellement observé

Le modèle PDMP1 contrôlé

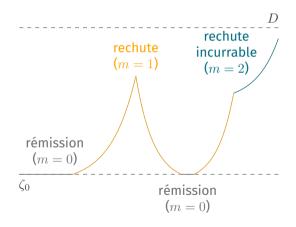
On passe aléatoirement d'un régime déterministe à un autre.



¹Processus Markovien Déterministe par Morceaux

Le modèle PDMP¹ contrôlé

On passe aléatoirement d'un régime déterministe à un autre.



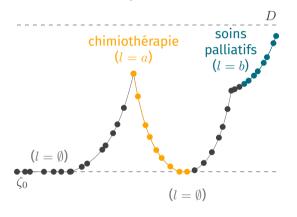
Soit l'état du patient $x = (m, k, \zeta, u)$:

- m le régime;
- k le nombre de rechute;
- ζ le biomarqueur;
- ullet u le temps depuis le dernier saut.

¹Processus Markovien Déterministe par Morceaux

Le modèle PDMP¹ contrôlé

On passe aléatoirement d'un régime déterministe à un autre.



Soit l'état du patient $x = (m, k, \zeta, u)$:

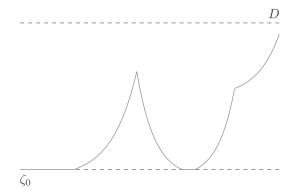
- m le régime;
- k le nombre de rechute;
- ζ le biomarqueur;
- ullet u le temps depuis le dernier saut.

Soit d la décision telle que: d = (l, r):

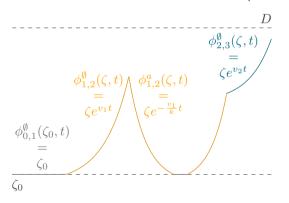
- l le traitement;
- ullet r le temps avant la prochaine visite.

¹Processus Markovien Déterministe par Morceaux

Un PDMP se définit par trois caractéristiques locales.



Un PDMP se définit par trois caractéristiques locales.

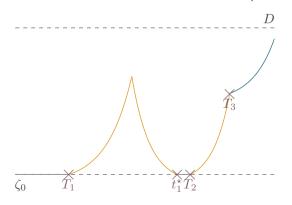


Le flot

Description de la partie déterministe du processus.

$$\Phi^l(x,t) = (m,k,\phi^l_{m,k}(\zeta,t),u+t)$$

Un PDMP se définit par trois caractéristiques locales.



L'intensité de saut

Description des mécanismes de saut du processus.

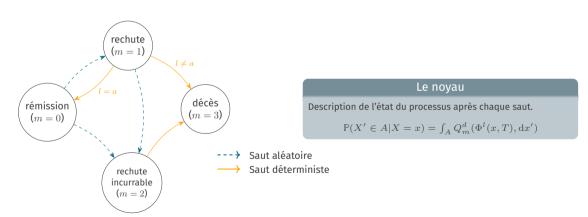
Saut à la frontière (déterministe)

$$t^{\star}(x) = t_{m}^{l\star}(\zeta) = \inf\{t > 0: \phi_{m,k}^{l}(\zeta,t) \in \{\zeta_{0},D\}\}$$

Saut aléatoire

$$\mathbb{P}(T > t) = e^{-\int_0^t \lambda_m^l(\Phi(x,s)) \, \mathrm{d}s}$$

Un PDMP se définit par trois caractéristiques locales.

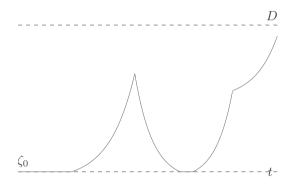


Sommaire

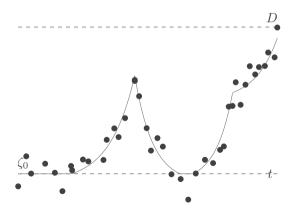
▶ Modélisation de la trajectoire d'un patient

► Problème partiellement observé

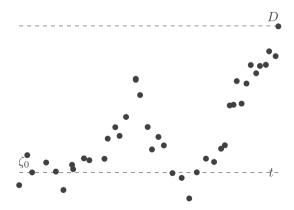
L'état de santé du patient n'est pas observé



L'état de santé du patient n'est pas observé et les mesures sont bruitées.



L'état de santé du patient n'est pas observé et les mesures sont bruitées. De plus, les données sont obtenues en temps discret.



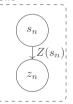
L'état de santé du patient n'est pas observé et les mesures sont bruitées. De plus, les données sont obtenues en temps discret.

Il y a des contraintes dans les décisions:

- Une chimiothérapie dure 45 jours au minimum;
- La date du prochain rendez-vous ne peut dépasser la date de suivi;
- Un mort ne reçoit pas de traitement.

Agent

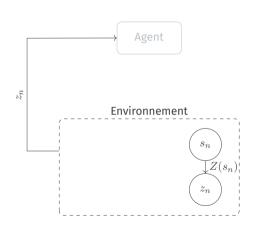
Environnement



POMDP

Un POMDP se définit par un tuple $(S, \mathcal{D}, \mathcal{K}, \mathcal{P}, \mathcal{O}, \mathcal{Z}, C)$.

- L'état du patient $s=(x,\tau,w)=(m,k,\zeta,u,\tau,w)$;
- · Les décisions restent inchangées:
- $\mathcal{K}(s) \subseteq D$ l'espace des décisions admissibles dans l'état s:
- La probabilité de transition $\mathcal{P}(s, d, s')$;
- Les observations $z = (m, F(\zeta), \tau, w)$;
- La fonction d'observations $\mathcal{Z}(s,z)$:
- La fonction de coût C.



POMDP

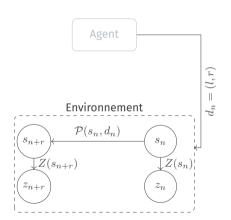
Un POMDP se définit par un tuple $(S, \mathcal{D}, \mathcal{K}, \mathcal{P}, \mathcal{O}, \mathcal{Z}, C)$.

- L'état du patient $s=(x,\tau,w)=(m,k,\zeta,u,\tau,w)$;
- · Les décisions restent inchangées;
- * $\mathcal{K}(s) \subseteq D$ l'espace des décisions admissibles dans l'état s;
- La probabilité de transition $\mathcal{P}(s,d,s')$;
- Les observations $z=(\hat{m},F(\zeta), au,w)$;
- La fonction d'observations $\mathcal{Z}(s,z)$;
- La fonction de coût *C*.

La fonction d'observation est:

$$Z(s_n) = z_n = (\mathbb{1}_{m=3}, F(\zeta), \tau, w),$$

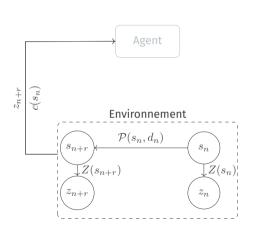
avec
$$F(\zeta) = \zeta + \epsilon$$
 et où $\epsilon \sim \mathcal{N}(0,1)$.



POMDP

Un POMDP se définit par un tuple $(\mathcal{S}, \mathcal{D}, \mathcal{K}, \mathcal{P}, \mathcal{O}, \mathcal{Z}, C)$.

- L'état du patient $s=(x,\tau,w)=(m,k,\zeta,u,\tau,w)$;
- · Les décisions restent inchangées;
- * $\mathcal{K}(s) \subseteq D$ l'espace des décisions admissibles dans l'état s;
- La probabilité de transition $\mathcal{P}(s,d,s')$;
- Les observations $z=(m,F(\zeta),\tau,w)$;
- La fonction d'observations $\mathcal{Z}(s,z)$;
- La fonction de coût C.



POMDP

Un POMDP se définit par un tuple $(S, \mathcal{D}, \mathcal{K}, \mathcal{P}, \mathcal{O}, \mathcal{Z}, C)$.

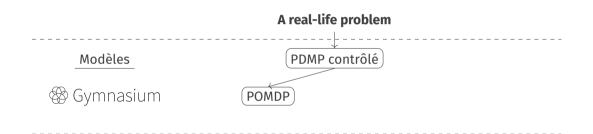
- L'état du patient $s = (x, \tau, w) = (m, k, \zeta, u, \tau, w)$;
- · Les décisions restent inchangées;
- * $\mathcal{K}(s) \subseteq D$ l'espace des décisions admissibles dans l'état s;
- La probabilité de transition $\mathcal{P}(s,d,s')$;
- Les observations $z=(m,F(\zeta),\tau,w)$;
- La fonction d'observations $\mathcal{Z}(s,z)$;
- La fonction de coût C.

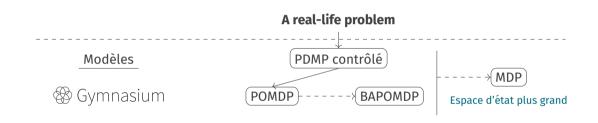
$$c(s_n) = r \times \frac{1}{2} |\zeta_{n+r} - \zeta_0| (+...)$$

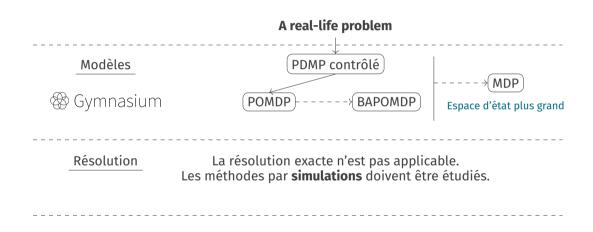
Sommaire

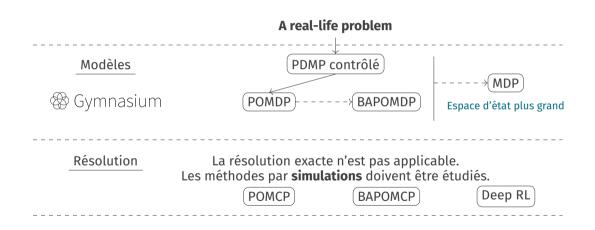
▶ Modélisation de la trajectoire d'un patient

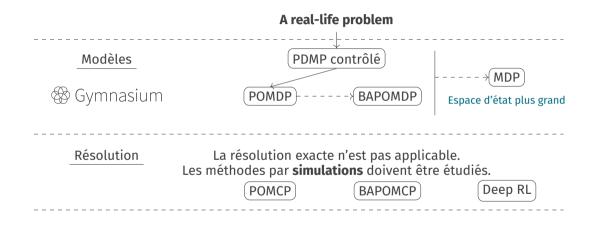
▶ Problème partiellement observé











Orlane Rossini