Deep Reinforcement Learning for Bayes-Adaptive Impulse Control of PDMPs

Orlane Rossini ¹, Alice Cleynen ^{1,2}, Benoîte de Saporta ¹, Régis Sabbadin ³ and Meritxell Vinyals ³

¹IMAG, Univ Montpellier, CNRS, Montpellier, France ²Iohn Curtin School of Medical Research, The Australian National University. Canberra, ACT, Australia ³Univ Toulouse, INRAE-MIAT, Toulouse, France

November 2025

Medical context

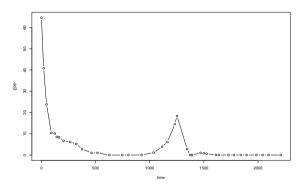


FIGURE: Example of patient data^a

- Patients who have had cancer benefit from regular follow-up;
- The concentration of clonal immunoglobulin is measured over time;
- The doctor has to make new decisions at each visit.

^aIUCT Oncopole and CRCT, Toulouse, France

Medical context

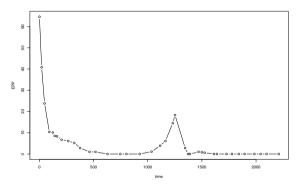


FIGURE: Example of patient data^a

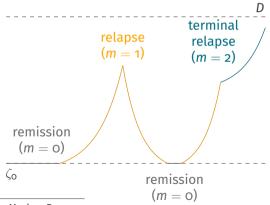
- The concentration of clonal immunoglobulin is measured over time;
- The doctor has to make new decisions at each visit.
- ⇒ Optimising decision-making to ensure the patient's quality of life

Patients who have had cancer benefit from regular follow-up;

^aIUCT Oncopole and CRCT, Toulouse, France

Controlled PDMP¹

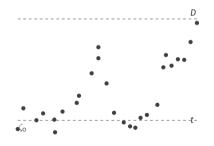
We switch randomly from one deterministic regime to another.



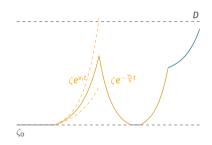
¹Piecewise Deterministic Markov Processes

Difficulties

Partial observation

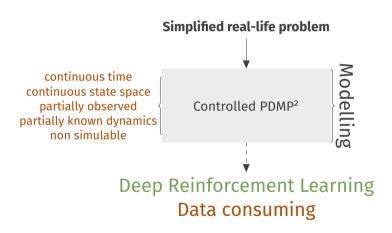


Partially known dynamics



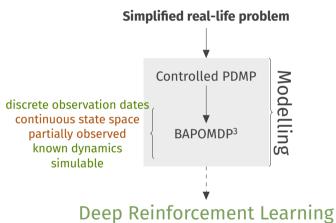
Hypothesis: ${\bf v_1} \sim {\bf Log\text{-Normal}} \ (\mu, \sigma^{-2})$, with μ and σ unknown.

Methods



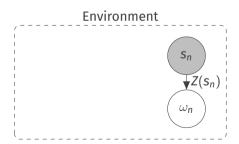
²Piecewise Deterministic Markov Processes

Methods



beep kennorcement Learning

³Bayes-Adaptive Partially Observed Markov Decision Process

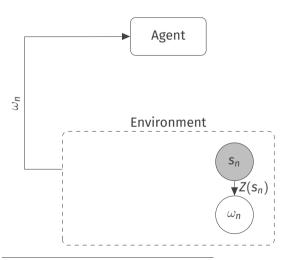


POMDP DEFINITION

A POMDP is defined by a tuple (\mathbb{S} , \mathbb{A} , P, Ω , Z, c).

- Patient condition $s = (m, k, \zeta, u) \in S$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function P(s'|s, a);
- Observation $\omega = (k, \mathit{F}(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Observation function $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

⁴Partially Observed Markov Decision Process

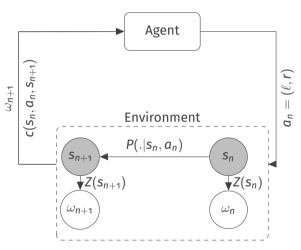


POMDP DEFINITION

A POMDP is defined by a tuple (S, A, P, Ω, Z, c) .

- Patient condition $s = (m, k, \zeta, u) \in S$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function P(s'|s, a);
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Observation function $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

⁴Partially Observed Markov Decision Process



POMDP DEFINITION

A POMDP is defined by a tuple (\mathbb{S} , \mathbb{A} , P, Ω , Z, c).

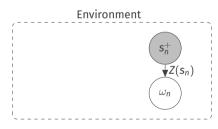
- Patient condition $s = (m, k, \zeta, u) \in S$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function P(s'|s, a);
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- **Observation function** $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

The transition function P(s'|s,a) is a combination of PDMP local characteristics.

⁴Partially Observed Markov Decision Process

Handle uncertainty with Bayesian framework

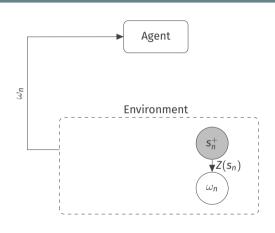
Normal-Inverse-Gamma(Θ) prior patients



BAPOMDP DEFINITION

- Space of hyperstate $\mathbb{S}^+ = \mathbb{S} \times \Theta$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function $P^+(s', \theta'|s, a, \theta)$;
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
 - Observation function $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

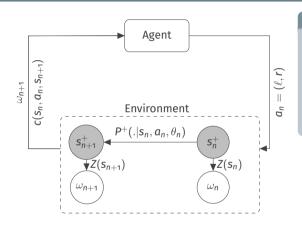
⁵Bayes Adaptive Partially observed Markov decision process



BAPOMDP DEFINITION

- Space of hyperstate $\mathbb{S}^+ = \mathbb{S} \times \Theta$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function $P^+(s', \theta'|s, a, \theta)$;
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Observation function $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

⁵Bayes Adaptive Partially observed Markov decision process

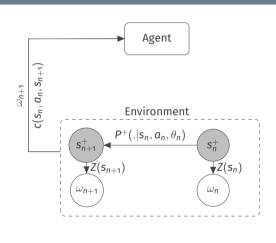


BAPOMDP DEFINITION

- Space of hyperstate $\mathbb{S}^+ = \mathbb{S} \times \Theta$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function $P^+(s', \theta'|s, a, \theta)$;
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Observation function $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

$$\begin{split} P^+\big((s',\theta') \in B_E \times B_\Theta \mid (s,\theta),a\big) \\ &= \int_{B_\sigma} \mathbf{1}_{B_\Theta} \mathcal{U}(\theta,s,a,s') \times P(ds' \mid s,a,\theta). \end{split}$$

⁵Bayes Adaptive Partially observed Markov decision process



BAPOMDP DEFINITION

- Space of hyperstate $\mathbb{S}^+ = \mathbb{S} \times \Theta$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function $P^+(s', \theta'|s, a, \theta)$;
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Observation function $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

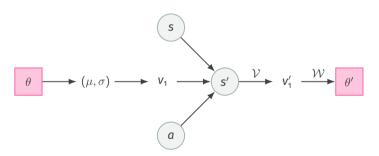
$$P^+((s',\theta')\in B_E\times B_\Theta\mid (s,\theta),a)$$

$$=\int_{B_{\mathsf{F}}} \mathsf{1}_{\mathsf{B}_{\Theta}} \mathcal{U}(\theta,\mathsf{s},a,\mathsf{s}') \times \mathsf{P}(\mathsf{d}\mathsf{s}'\mid \mathsf{s},a,\theta).$$

⁵Bayes Adaptive Partially observed Markov decision process

Generate transition from prior

$$\mathcal{U}(\theta, s, a, s') = \mathcal{W}(\theta, \mathcal{V}(s, a, s')),$$



Identify an optimal policy π^{\star}

$$\underbrace{c(s, a, s')}_{\text{Cost function}} = \underbrace{c_V}_{\text{visit cost}} \\ + \underbrace{c_D(H - t') \times \mathbb{1}_{m' = 3}}_{\text{death cost}} \\ + \underbrace{\kappa_C \times r \times \mathbb{1}_{\ell = a}}_{\text{treatment cost}}$$

⁶Bayes Adaptative Partially Observable Markov Decision Process

Identify an optimal policy π^{\star}

$$\underbrace{V(\pi, \mathbf{S})}_{\text{Optimization criterion}} = \underbrace{\mathbb{E}_{\mathbf{S}}^{\pi} [\sum_{n=0}^{H-1} c(S_{n-1}, A_n, S_n)]}_{\text{Expected total cost as a result of the policy } \pi}$$

⁶Bayes Adaptative Partially Observable Markov Decision Process

Identify an optimal policy π^{\star}

$$\underbrace{V(\pi,s)}_{\text{Optimization criterion}} = \underbrace{\mathbb{E}_{s}^{\pi} [\sum_{n=0}^{H-1} c(S_{n-1},A_{n},S_{n})]}_{\text{Expected total cost as a result of the policy } \pi}$$

$$\underbrace{V^*(s)}_{\text{Value function}} = \underbrace{\min_{\pi \in \Pi} V(\pi, s)}_{\text{Minimisation across policy space}}$$

⁶Baves Adaptative Partially Observable Markov Decision Process

Identify an optimal policy π^{\star}

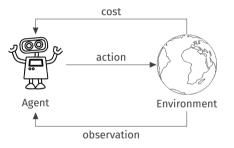
In reality, we do not observe state space!

Let $h_n = (\omega_0, a_0, \omega_1, a_1, \dots, \omega_n)$ be the history

$$\underbrace{V^{\star}(h)}_{\text{Value function}} = \underbrace{\min_{\pi \in \Pi} V(\pi, h)}_{\text{Minimisation across policy space.}}$$

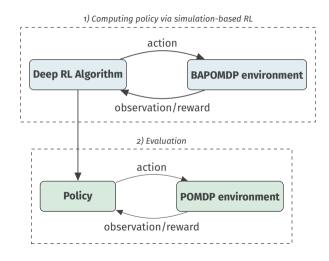
⁶Bayes Adaptative Partially Observable Markov Decision Process

Reinforcement Learning



The optimal policy is obtained from the experiments $<\omega,a,\omega',c>$, generated from P^+ transition function

Evaluate BAPOMDP framework



Performance BAPOMDP

Policies	Mean Cost (log)	Survival rate	Treatment number	Visit number
ОН	13.45 \pm 0.01	99.60%	0.87	120.57
Random	12.79 \pm 0.01	92.08%	4.36	67.21
Inactive	8.21 ± 0.07	63.42%	0.00	35.39
Threshold	$\textbf{7.03} \pm \textbf{0.04}$	99.98%	5.07	64.67
DQN ⁷	$\textbf{5.08} \pm \textbf{0.00}$	99.70%	19.99	38.99
PPO ⁸	5.94 \pm 0.01	99.80%	19.99	58.99

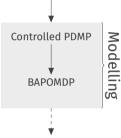
Table: Policy evaluation performance on 5000 Monte-Carlo simulations

⁷Deep Q-Network

⁸Proximal Policy Optimization

Conclusion

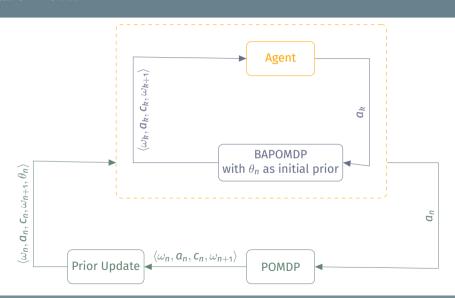
Simplified real-life problem



Deep Reinforcement Learning

- Bayes-adaptive method to address the PDMP control problem
- No explicit policies
- No estimates of unknown parameters

Future work

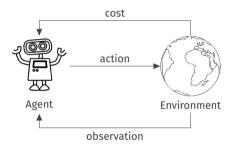


Policy behavior indicators

Table: Summary of policy behavior indicators based on 5 000 Monte-Carlo simulations.

Indicator	PPO with AM	DQN with AM
Survival rates	99.80 $\%\pm$ 0.00	99.70 $\%$ \pm 0.00
Average number of treatment	19.99 \pm 0.00	19.99 \pm 0.01
Average time spend under treatment	1199.63 \pm 00.04	1199.56 \pm 0.05
Average number of visit	58.99 ± 0.01	$\textbf{38.99} \pm \textbf{0.01}$
Average delay between two visits	$\textbf{40.00} \pm \textbf{0.00}$	$\textbf{60.00} \pm \textbf{0.00}$
Rate of visits occurring within 15 days	$\textbf{0.01} \pm \textbf{0.00}$	$\textbf{0.00} \pm \textbf{0.00}$
Rate of visits occurring within 30 days	66.66 ± 0.17	$\textbf{0.00} \pm \textbf{0.00}$
Rate of visits occurring within 60 days	33.33 ± 0.17	$\textbf{100} \pm \textbf{0.00}$

Reinforcement Learning



The optimal policy is obtained from the experiments $<\omega,a,\omega',c>$, generated from P^+ transition function

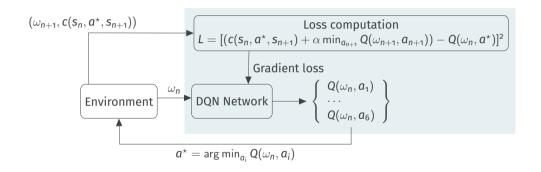
$$\underbrace{Q^{\pi}(s,a)}_{\text{Q value}} = \underbrace{\mathbb{E}^{\pi}[\sum_{n=0}^{H-1}c(S_{n-1},A_n,S_n)|s,a=(\ell,r)]}_{\text{Value of an action in a state according to the policy }\pi$$

$$\underbrace{Q^*(s,a)}_{Q \text{ function}} = \min_{\pi \in \Pi} Q^{\pi}(s,a)$$

$$A(s,a) = Q(s,a) - V(s)$$

Advantage function Extra cost obtained by the agent by taking the action

Algorithm example: DQN⁹



⁹Deep Q-Network

Algorithm example: PPO¹⁰

Agent



¹⁰Proximal policy optimization