Decisions Under Uncertainty: Reinforcement Learning for Impulse Control Piecewise Deterministic Markov Processes

Orlane Rossini ¹, Alice Cleynen ^{1,2}, Benoîte de Saporta ¹, Régis Sabbadin ³ and Meritxell Vinyals ³

¹IMAG, Univ Montpellier, CNRS, Montpellier, France ²John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia ³Univ Toulouse, INRAE-MIAT, Toulouse, France

May 2025

Medical context

FIGURE: Example of patient data^{*a*}

- Patients who have had cancer benefit from regular follow-up;
- The concentration of clonal immunoglobulin is measured over time;
- The doctor has to make new decisions at each visit.

^aIUCT Oncopole and CRCT, Toulouse, France

Medical context

FIGURE: Example of patient data^{*a*}

- Patients who have had cancer benefit from regular follow-up;
- The concentration of clonal immunoglobulin is measured over time;
- The doctor has to make new decisions at each visit.

⇒ Optimising decision-making to ensure the patient's quality of life

^aIUCT Oncopole and CRCT, Toulouse, France

Controlled PDMP¹

We switch randomly from one deterministic regime to another.

¹Piecewise Deterministic Markov Processes

Controlled PDMP¹

We switch randomly from one deterministic regime to another.

Let $x = (m, \ell, k, \zeta, u)$ the patient's condition:

- *m* the patient's condition;
- ℓ the current treatment;
- *k* the number of treatments;
- ζ the biomarker;
- *u* the time since the last jump.

A PDMP is defined by three local characteristics.

FLOW

Description of the deterministic part of the process.

$$\Phi^{\ell}(x,t) = (m,k,\ell,\phi^{\ell}_{m,k}(\zeta,t),u+t)$$

Local Characteristics of a PDMP²

A PDMP is defined by three local characteristics.

UMP INTENSITY

Description of the process jump mechanisms.

• Boundary jump (deterministic)

$$t^*(\mathbf{x}) = t_{m,k}^{\ell \star}(\zeta) = \inf\{t > \mathsf{o} : \phi_{m,k}^{\ell}(\zeta, t) \in \{\zeta_{\mathsf{o}}, D\}\}$$

• Random jump

$$\mathbb{P}(T > t) = e^{-\int_0^t \lambda_{m,k}^\ell(\Phi(x,s)) \, \mathrm{d}s}$$

Local Characteristics of a PDMP²

A PDMP is defined by three local characteristics.

Markov kernel

Description of the state of the process after each jump.

$$\mathbb{P}(X' \in A | X = x) = \int_A Q^d_{m,k}(\Phi^{\ell}(x,T), \mathrm{d}x')$$

²Piecewise Deterministic Markov Processes

Identify an ϵ -optimal strategy $S = (\tau_n, \chi_n)_{n \geq 1}$

$$\underbrace{\mathcal{V}(\mathcal{S}, \mathbf{X})}_{\text{Expected cost of strategy}\mathcal{S}} = \mathbb{E}_{\mathbf{X}}^{\mathcal{S}} \left[\int_{0}^{+\infty} e^{-\gamma t} \underbrace{c_{\mathbf{R}}(X_{t})}_{\text{current trajectory cost}} dt + \sum_{n=1}^{\infty} \underbrace{c_{\mathbf{I}}}_{\text{impulse cost}} (X_{\tau_{n}}, X_{\tau_{n}^{+}}) \right],$$

³Piecewise Deterministic Markov Processes

Solving impulse control for PDMP³

Identify an ϵ -optimal strategy $S = (\tau_n, \chi_n)_{n \geq 1}$

$$\mathcal{V}^{\star}(\mathbf{X}) = \inf_{\mathcal{S} \in \mathsf{S}} \mathcal{V}(\mathcal{S}, \mathbf{X})$$

³Piecewise Deterministic Markov Processes

Difficulties

Partially known dynamics

Hypothesis: $v_1 \sim$ Log-Normal (μ, σ^{-2}) , with μ and σ unknown.

Partial observation

Methods

⁴Piecewise Deterministic Markov Processes

Methods

⁵Piecewise Deterministic Markov Processes ⁶Bayes-Adaptive Partially Observed Markov Decision Process

Agent

MDP DEFINITION

A MDP is defined by a tuple (\mathbb{S} , \mathbb{A} , P, c).

- Patient condition $s = (m, k, \zeta, u) \in S$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function *P*(s'|s, a);
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

MDP DEFINITION

A MDP is defined by a tuple (\mathbb{S} , \mathbb{A} , P, c).

- Patient condition $s = (m, k, \zeta, u) \in S$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function *P*(s'|s, a);
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

MDP DEFINITION

A MDP is defined by a tuple (\mathbb{S} , \mathbb{A} , P, c).

- Patient condition $s = (m, k, \zeta, u) \in S$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function *P*(*s*'|*s*, *a*);
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

⁸Partially Observed Markov Decision Process

⁸Partially Observed Markov Decision Process

⁸Partially Observed Markov Decision Process

POMDP DEFINITION

A POMDP is defined by a tuple (S, A, P, Ω , Z, c).

- Patient condition $s = (m, k, \zeta, u) \in S$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function P(s'|s, a);
- **Observation** $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- **Observation function** $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

POMDP DEFINITION

A POMDP is defined by a tuple (\mathbb{S} , \mathbb{A} , P, Ω , Z, c).

- Patient condition $s = (m, k, \zeta, u) \in S$;
- Transition function P(s'|s, a);
- **Observation** $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega;$
- **Observation function** $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

⁸Partially Observed Markov Decision Process

Generate transition from prior

⁹Bayes Adaptive Partially observed Markov decision process

⁹Bayes Adaptive Partially observed Markov decision process

BAPOMDP DEFINITION

Un BAPOMDP se définit par un tuple (\mathbb{S}^+ , \mathbb{A} , P^+ , Ω , Z, c).

- Space of hyperstate $\mathbb{S}^+ = \mathbb{S} \times \Theta$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- **Transition function** $P^+(s', \theta'|s, a, \theta)$;
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega;$
- Observation function $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

⁹Bayes Adaptive Partially observed Markov decision process

BAPOMDP DEFINITION

Un BAPOMDP se définit par un tuple (\mathbb{S}^+ , \mathbb{A} , P^+ , Ω , Z, c).

- Space of hyperstate $\mathbb{S}^+ = \mathbb{S} \times \Theta$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- **Transition function** $P^+(s', \theta'|s, a, \theta)$;
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega;$
- Observation function $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

⁹Bayes Adaptive Partially observed Markov decision process

¹⁰Bayes Adaptative Partially Observable Markov Decision Process

¹⁰Bayes Adaptative Partially Observable Markov Decision Process

¹⁰Bayes Adaptative Partially Observable Markov Decision Process

In reality, we do not observe state space!

Let $h_n = (\omega_0, a_0, \omega_1, a_1, \dots, \omega_n)$ be the history

¹⁰Bayes Adaptative Partially Observable Markov Decision Process

Reinforcement Learning

The optimal policy is obtained from the experiments $< \omega, a, \omega', c >$, generate from P^+ transition function

$$\underbrace{\pi^{\star}}_{Q \text{ function}} = \arg\min_{a \in \mathbb{A}} Q^{\star}(s, a)$$

¹¹Deep Q-Network

Conclusion and future work

¹²Piecewise Deterministic Markov Processes
¹³Partially Observed Markov Decision Process
¹⁴Bayes Adaptative Partially Observed Markov Decision Process