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Medical context

ol e Patients who have had cancer benefit
. \ from regular follow-up;

! e The concentration of clonal
] \ immunoglobulin is measured over time;
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) e The doctor has to make new decisions
-1 \“\-—‘-\Bﬂ,,f./-/' e e at each visit.
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41UCT Oncopole and CRCT, Toulouse, France



Medical context

e Patients who have had cancer benefit
from regular follow-up;

- \ e The concentration of clonal
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immunoglobulin is measured over time;

. \ ] e The doctor has to make new decisions
/'/\ at each visit.

i = . = Optimising decision-making to ensure
the patient’s quality of life
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Letx = (m, ¢, R, ¢, u) the patient’s condition:

m the patient’s condition;

¢ the current treatment;

k the number of treatments;

¢ the biomarker;

u the time since the last jump.



Local Characteristics of a PDMP?

A PDMP is defined by three local characteristics.
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ce Description of the deterministic part of the process.
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Local Characteristics of a PDMP?

A PDMP is defined by three local characteristics.

JUMP INTENSITY

Description of the process jump mechanisms.
o Boundary jump (deterministic)

t*(x) = th,(C) = inf{t > 0 : ¢f, (¢, 1) € {Co, D}}

e Random jump

Co 1 tl

P(T > t) = e~ 6 Am e as
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Local Characteristics of a PDMP?

remission
(m=o0)

A PDMP is defined by three local characteristics.
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Description of the state of the process after each jump.
(m=3)

P(X' € AX = x) = [, Q% ((®*(x,T),dx’)

MARKOV KERNEL



Solving impulse control for PDMP3

Identify an e-optimal strategy S = (7, Xn)n>1

+oo >
S —~t
V(S,x) =ES / e R(X)  dt+> o (XX,
~—— o ~—— n=1. ~
Expected cost of strategyS current trajectory cost impulse cost
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Solving impulse control for PDMP3

Identify an c-optimal strategy S = (71, Xn)n>+

—+o00
S —~t
V(S,X) = ES / e cr(Xe) dt + Z (X Xoi) |
~—— o ~—— n=1
Expected cost of strategyS current trajectory cost |mpulse cost

V*(x) = érégV(S,x)
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Difficulties

Partially known dynamics

Partial observation
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Hypothesis: v; ~ Log-Normal (i, c~2), with
1 and o unknown.



Methods

Simplified real-life problem
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Deep Reinforcement Learning
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Characteristics of a MDP’

MDP DEFINITION

. A MDP is defined by a tuple (S, A, P, c).
________ Environment e Patient conditions = (m, k, ¢,u) € S;
e Actionsa = (¢,r) € A;
e Transition function P(s’|s, a);
e Costfunctionc:S x A xS —R.
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Characteristics of a MDP’

—»  Agent

Sntr

. A MDP is defined by a tuple (S, A, P, c).
Environment o Patient conditions = (m, R, ¢,u) € S;
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v MDP DEFINITION
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e Actionsa = (¢,r) € A;
o Transition function P(s’|s, a);
e Costfunctionc: S x A xS —R.
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Characteristics of a POMDP?

POMDP DEFINITION

A POMDP is defined by a tuple (S, A, P,Q,Z, c).
. e Patient conditions = (m, R, {,u) € S;
________ Environment o Actionsa = (£,r) € A;
e Transition function P(s’|s, a);
e Observation w = (R, F(C, €), I1m—3) €
o Observation function Z(w|s);
e Costfunctionc:SxA xS —R.
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Characteristics of a POMDP?

Environment

POMDP DEFINITION

-

> A POMDP is defined by a tuple (S, A, P, Q, Z, c).
1 o Patient conditions = (m, Rk, ¢,u) € S;
S e Actionsa = (¢,r) € A;

e Transition function P(s’|s, a);
Snir P(.Isn,an) : o Observation w = (k, F(C, €), Im_3) €
Observation function Z(w|s);
e Costfunctionc: S XA XS — R.
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Characteristics of a POMDP?

—  Agent

POMDP DEFINITION

A POMDP is defined by a tuple (S, A, P,Q,Z, c).
X e Patient conditions = (m,R, ¢, u) € S;
Environment o Actionsa = (£,1) € A;

Wn+r
¢(Sn, Qn, Snr)

e Transition function P(s’|s, a);

|
l s P('|S”’ a”) s e Observation w = (R, F(¢, €), 1m—3) € O
L\ o " o Observation function Z(w|s);
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Handle uncertainty with Bayesian framework

We do not know the distribution parameters (u, 0~2) of the slope law v1

—— Log-normal(yy = —4.5, ¢ = 0.5)
—_— Prior on 1
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Generate transition from prior

Lo72) ~ p(0 ’,’, L, \ - / - N Tty « p(o
(o) ~pl0). 2, (%) ~ p(0) (o)~ p(@) U0 < P0)
e II, ‘~¥ \FI \.i \\\~\\
Sty = (Stir Oryr) a4 St = (Strr Oeir) St = (Stir: Oeir) St = (Stirs Orir) >



Characteristics of a BAPOMDP?

Environment e Actionsa = (4,r) €A

BAPOMDP DEFINITION

Un BAPOMDP se définit par un tuple (S™, A, P, Q,Z, c).
o Space of hyperstate ST = S x ©;
o Transition function P* (s, 0'[s, a, 6);
e Observation w = (k, F(¢, €), 1n—3) € O
e Observation function Z(w|s);
e Costfunctionc:SxA xS —R.
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Characteristics of a BAPOMDP?

Agent

BAPOMDP DEFINITION

Environment Un BAPOMDP se définit par un tuple (S*,A, P™, Q,Z, c).
o Space of hyperstate ST = S x ©;

e Actionsa = (¢,r) € A;
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Wnr
c(Sn, Qn, Sn+r)
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Solving a BAPOMDP™"

Identify an optimal policy =*

c(s,a,s") = Cy
N— ~—~
Cost function  Visit cost

+ CD(H — tl) X 1m/:3

death cost
+ ke X I X 1@:0
—_———

treatment cost
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Solving a BAPOMDP™"

Identify an optimal policy =*

H—1
V(ﬂ-7s) = Eg[z C(Sn—1,An7Sn)]
SN—— n—o

Optimization criterion

Expected long-term cost as a result of the policy 7
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Solving a BAPOMDP™"

Identify an optimal policy 7*

H—1
V(,]TVS) = Eg[z C(Sn—’l,An’Sn)]
n=0

Optimization criterion

Expected long-term cost as a result of the policy =

Vi(s) = min V(7 s)
—— el
Value function —

Minimisation across policy space
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Solving a BAPOMDP™"

Identify an optimal policy =*

In reality, we do not observe state space!

Let h, = (wo, Ao, w1, s, - . . ,wp) be the history
V<(h) = miH V(m, h)
N—— TE
Value function S

Minimisation across policy space.
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Reinforcement Learning

cost

H—1
Q7(s,d) = ET[>_c(Sn-1,AnSn)ls,a= (1)
) T n—o
action Optimization criterion

Value of an action in a state according to the policy 7

Environment

Q*(s,a) =minQ" (s, a)
~—— 7€l

observation

Q fonction
The optimal policy is obtained from the
H /
experiments < w, a,u’,C>, g_enerate from 7 —argminQ*(s,q)
P transition function ~ acA
Q fonction



Algorithm example: DQN™

(wnr, €(Sn, @*, Snr)) X Loss computation

] L = [(c(sn, @*,Sn+r) + v ming,,, Q(wn+r, Anir)) — Qwn, a*)]?

Gradient loss

Q(Wn 1) a'l)

Environment DQN Network

Q(wm 06)

|

a* = argming, Q(wn, ;)

""Deep Q-Network
16 / 17



Conclusion and future work

Simplified real-life problem

J

Controlled PDMP™
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sumapow

Saving real data
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