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Medical context
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Figure: Example of patient dataa

aIUCT Oncopole and CRCT, Toulouse, France

• Patients who have had cancer benefit
from regular follow-up;

• The concentration of clonal
immunoglobulin is measured over time;

• The doctor has to make new decisions
at each visit.
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Figure: Example of patient dataa

aIUCT Oncopole and CRCT, Toulouse, France

• Patients who have had cancer benefit
from regular follow-up;

• The concentration of clonal
immunoglobulin is measured over time;

• The doctor has to make new decisions
at each visit.

=⇒ Optimising decision-making to ensure
the patient’s quality of life
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Controlled PDMP1

We switch randomly from one deterministic regime to another.
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Let x = (m, ℓ, k, ζ,u) the patient’s condition:
• m the patient’s condition;
• ℓ the current treatment;
• k the number of treatments;
• ζ the biomarker;
• u the time since the last jump.
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Local Characteristics of a PDMP2

A PDMP is defined by three local characteristics.

D

ϕ∅
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ζev2t

D
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Flow

Description of the deterministic part of the process.

Φℓ(x, t) = (m, k, ℓ, ϕℓ
m,k(ζ, t), u + t)
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Local Characteristics of a PDMP2

A PDMP is defined by three local characteristics.

D

T1 t⋆1 T2

T3

D

ζ0

Jump intensity

Description of the process jump mechanisms.
• Boundary jump (deterministic)

t⋆(x) = tℓ⋆m,k(ζ) = inf{t > 0 : ϕℓ
m,k(ζ, t) ∈ {ζ0, D}}

• Random jump

P(T > t) = e−
∫ t

0 λℓ
m,k(Φ(x,s)) ds
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Local Characteristics of a PDMP2

A PDMP is defined by three local characteristics.

remission
(m = 0)

relapse
(m = 1)

terminal
relapse
(m = 2)

death
(m = 3)

ℓ = a

ℓ ̸= a

Random Jump
Deterministic Jump

Markov kernel

Description of the state of the process after each jump.

P(X′ ∈ A|X = x) =
∫
A Q

d
m,k(Φ

ℓ(x, T), dx′)
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Solving impulse control for PDMP3

Identify an ϵ-optimal strategy S = (τn, χn)n≥1

V(S, x)︸ ︷︷ ︸
Expected cost of strategyS

= ES
x

∫ +∞

0
e−γt cR(Xt)︸ ︷︷ ︸

current trajectory cost

dt+
∞∑
n=1

cI︸︷︷︸
impulse cost

(
Xτn , Xτ+

n

) ,
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V⋆(x) = inf
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Difficulties

Partial observation

D
D

ζ0
t

Partially known dynamics

D

ζev1t ζe−
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k t

D

ζ0

Hypothesis: v1 ∼ Log-Normal (µ, σ−2), with
µ and σ unknown.
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Methods

Simplified real-life problem

Controlled PDMP4

continuous time
continuous state space

partially observed
partially known dynamics

simulable

M
odelling

Deep Reinforcement Learning
Data consuming
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Characteristics of a MDP7

BAPOMDP

POMDP

Markov Decision Process
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Characteristics of a MDP7

Environment
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MDP Definition

A MDP is defined by a tuple (S, A, P, c).
• Patient condition s = (m, k, ζ, u) ∈ S;
• Actions a = (ℓ, r) ∈ A;
• Transition function P(s′|s, a);
• Cost function c : S × A × S → R.
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Characteristics of a POMDP8
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POMDP Definition

A POMDP is defined by a tuple (S, A, P,Ω, Z, c).
• Patient condition s = (m, k, ζ, u) ∈ S;
• Actions a = (ℓ, r) ∈ A;
• Transition function P(s′|s, a);
• Observation ω = (k, F(ζ, ϵ), 1m=3) ∈ Ω;
• Observation function Z(ω|s);
• Cost function c : S × A × S → R.
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Handle uncertainty with Bayesian framework

We do not know the distribution parameters (µ, σ−2) of the slope law v1
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Generate transition from prior

s+t = (st, θt)

a = (r, ℓ) · · · a = (r, ℓ)

s+t+r = (st+r, θt+r) s+t+r = (st+r, θt+r)· · · s+t+r = (st+r, θt+r) s+t+r = (st+r, θt+r) · · ·

(µ, σ−2) ∼ p(θ)
(µ, σ−2) ∼ p(θ) (µ, σ−2) ∼ p(θ) (µ, σ−2) ∼ p(θ)
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Characteristics of a BAPOMDP9

Environment

Agent

s+n
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BAPOMDP Definition

Un BAPOMDP se définit par un tuple (S+, A, P+,Ω, Z, c).
• Space of hyperstate S+ = S × Θ;
• Actions a = (ℓ, r) ∈ A;
• Transition function P+(s′, θ′|s, a, θ);
• Observation ω = (k, F(ζ, ϵ), 1m=3) ∈ Ω;
• Observation function Z(ω|s);
• Cost function c : S × A × S → R.
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Solving a BAPOMDP10

Identify an optimal policy π⋆

c(s,a, s′)︸ ︷︷ ︸
Cost function

= CV︸︷︷︸
visit cost

+ CD(H− t′)× 1m′=3︸ ︷︷ ︸
death cost

+ κC × r × 1ℓ=a︸ ︷︷ ︸
treatment cost
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Optimization criterion

= Eπ
s [
H−1∑
n=0

c(Sn−1,An, Sn)]︸ ︷︷ ︸
Expected long-term cost as a result of the policy π
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Solving a BAPOMDP10

Identify an optimal policy π⋆

In reality, we do not observe state space!

Let hn = (ω0,a0, ω1,a1, . . . , ωn) be the history

V⋆(h)︸ ︷︷ ︸
Value function

= min
π∈Π

V(π,h)︸ ︷︷ ︸
Minimisation across policy space.
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Reinforcement Learning

EnvironmentAgent

observation

action

cost

The optimal policy is obtained from the
experiments < ω,a, ω′, c >, generate from

P+ transition function

Qπ(s,d)︸ ︷︷ ︸
Optimization criterion

= Eπ[
H−1∑
n=0

c(Sn−1,An, Sn)|s,a = (ℓ, r)]︸ ︷︷ ︸
Value of an action in a state according to the policy π

Q⋆(s,a)︸ ︷︷ ︸
Q fonction

=min
π∈Π

Qπ(s,a)

π⋆︸︷︷︸
Q fonction

=argmin
a∈A

Q⋆(s,a)
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Algorithm example: DQN11

DQN NetworkEnvironment

 Q(ωn,a1)
· · ·
Q(ωn,a6)

ωn

a⋆ = argminai Q(ωn,ai)

Loss computation
L = [(c(sn,a⋆, sn+r) + γminan+r Q(ωn+r,an+r))− Q(ωn,a⋆)]2

Gradient loss

(ωn+r, c(sn,a⋆, sn+r))

11Deep Q-Network
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Conclusion and future work

Simplified real-life problem

Controlled PDMP12

POMDP13 BAPOMDP14
M

odelling

Algorithms Model-free Algorithms Model-based

Resolution

Saving real data
12Piecewise Deterministic Markov Processes
13Partially Observed Markov Decision Process
14Bayes Adaptative Partially Observed Markov Decision Process

17 / 17


