Deep Reinforcement Learning for Bayes-Adaptive Impulse Control of PDMPs

Orlane Rossini ¹, Alice Cleynen ^{1,2}, Benoîte de Saporta ¹, Régis Sabbadin ³ and Meritxell Vinyals ³

¹IMAG, Univ Montpellier, CNRS, Montpellier, France ²Iohn Curtin School of Medical Research, The Australian National University. Canberra, ACT, Australia ³Univ Toulouse, INRAE-MIAT, Toulouse, France

October 2025

Medical context

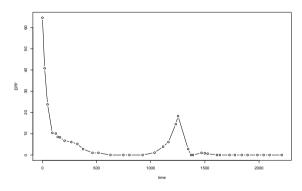


FIGURE: Example of patient data^a

- Patients who have had cancer benefit from regular follow-up;
- The concentration of clonal immunoglobulin is measured over time;
- The doctor has to make new decisions at each visit.

^aIUCT Oncopole and CRCT, Toulouse, France

Medical context

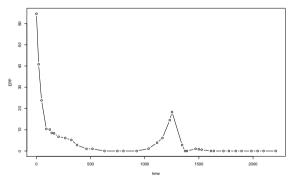


FIGURE: Example of patient data^a

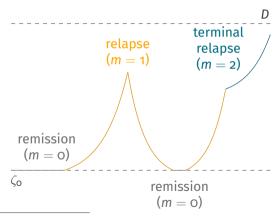
- The concentration of clonal immunoglobulin is measured over time;
- The doctor has to make new decisions at each visit.
- ⇒ Optimising decision-making to ensure the patient's quality of life

Patients who have had cancer benefit from regular follow-up;

^aIUCT Oncopole and CRCT, Toulouse, France

Controlled PDMP¹

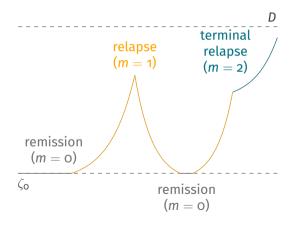
We switch randomly from one deterministic regime to another.



¹Piecewise Deterministic Markov Processes

Controlled PDMP¹

We switch randomly from one deterministic regime to another.



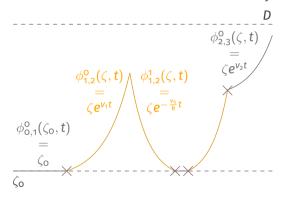
Let $x = (m, \ell, k, \zeta, u)$ the patient's condition:

- *m* the patient's condition;
- \ell the current treatment;
- k the number of treatments;
- ζ the biomarker;
- *u* the time since the last jump.

¹Piecewise Deterministic Markov Processes

Local Characteristics of a PDMP²

A PDMP is defined by three local characteristics.



FLOW

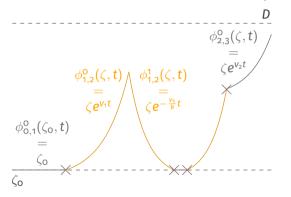
Description of the deterministic part of the process.

$$\Phi^{\ell}(\mathbf{x},t) = (m,k,\ell,\phi^{\ell}_{m,k}(\zeta,t),u+t)$$

²Piecewise Deterministic Markov Processes

Local Characteristics of a PDMP²

A PDMP is defined by three local characteristics.



Jump intensity

Description of the process jump mechanisms.

Boundary jump (deterministic)

$$\mathsf{t}^\star(\mathsf{x}) = \mathsf{t}^{\ell\,\star}_{m,k}(\zeta) = \inf\{\mathsf{t} > \mathsf{o} : \phi^\ell_{m,k}(\zeta,\mathsf{t}) \in \{\zeta_\mathsf{o},\mathsf{D}\}\}$$

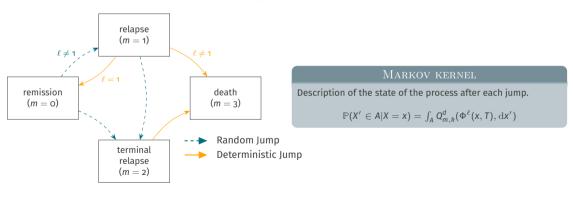
Random jump

$$\mathbb{P}(T > t) = e^{-\int_0^t \lambda_{m,k}^{\ell}(\Phi(x,s)) \, \mathrm{d}s}$$

²Piecewise Deterministic Markov Processes

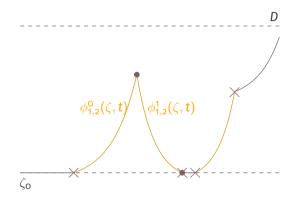
Local Characteristics of a PDMP²

A PDMP is defined by three local characteristics.



²Piecewise Deterministic Markov Processes

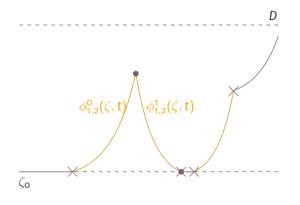
Impulse control for PDMP



Choosing a new starting point:

- date for the next impulse;
- point from which to restart the process.

Impulse control for PDMP



Choosing a new starting point:

- date for the next impulse;
- point from which to restart the process.

Restrictions:

- the delay between consecutive impulses is in a finite set;
- $\bullet\,$ only change the current treatment $\ell.$

Solving impulse control for PDMP

Identify an ϵ -optimal strategy $\mathcal{S} = (\tau_n, \chi_n)_{n \geq 1}$

$$\underbrace{\mathcal{V}(\mathcal{S}, \mathbf{X})}_{\text{Expected cost of strategy }\mathcal{S}} = \mathbb{E}_{\mathbf{X}}^{\mathcal{S}} \left[\int_{0}^{+\infty} e^{-\gamma t} \underbrace{c_{R}(\mathbf{X}_{t})}_{\text{running cost}} dt + \sum_{n=1}^{\infty} \underbrace{c_{l}}_{\text{impulse cost}} (\mathbf{X}_{\tau_{n}}, \mathbf{X}_{\tau_{n}^{+}}) \right],$$

Solving impulse control for PDMP

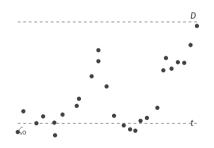
Identify an ϵ -optimal strategy $S = (\tau_n, \chi_n)_{n \geq 1}$

$$\underbrace{\mathcal{V}(\mathcal{S}, \mathbf{X})}_{\text{Expected cost of strategy }\mathcal{S}} = \mathbb{E}_{\mathbf{X}}^{\mathcal{S}} \left[\int_{0}^{+\infty} e^{-\gamma t} \underbrace{c_{R}(\mathbf{X}_{t})}_{\text{running cost}} dt + \sum_{n=1}^{\infty} \underbrace{c_{I}}_{\text{impulse cost}} \left(\mathbf{X}_{\tau_{n}}, \mathbf{X}_{\tau_{n}^{+}} \right) \right],$$

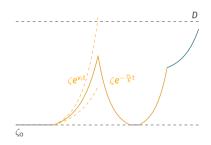
$$\mathcal{V}^*(x) = \inf_{\mathcal{S} \in S} \mathcal{V}(\mathcal{S}, x)$$

Difficulties

Partial observation

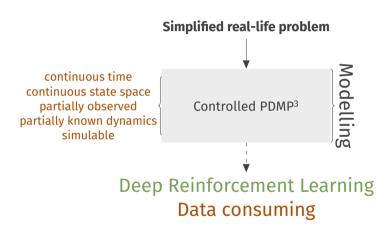


Partially known dynamics



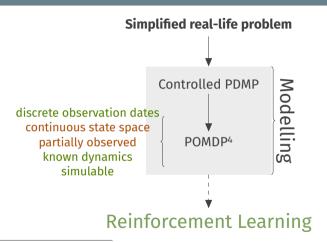
Hypothesis: v_1 \sim Log-Normal (μ,σ^{-2}), with $\overline{\mu}$ and σ unknown.

Methods



³Piecewise Deterministic Markov Processes

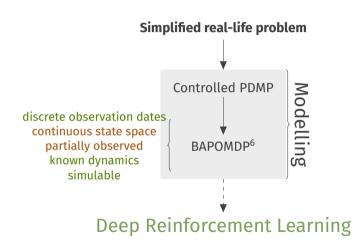
Previous work: Partial observation and known dynamics⁵



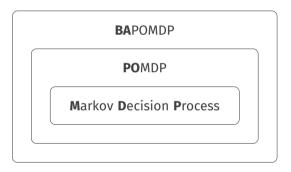
⁴Partially Observed Markov Decision Process

⁵de Saporta B, Thierry d'Argenlieu A, Sabbadin R, Cleynen A (2024) A Monte-Carlo planning strategy for medical follow-up optimization: Illustration on multiple myeloma data. PLOS ONE 19(12): e0315661

Methods

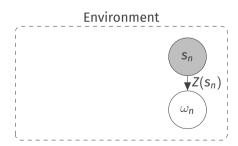


⁶Bayes-Adaptive Partially Observed Markov Decision Process



⁷Markov Decision Process

Agent

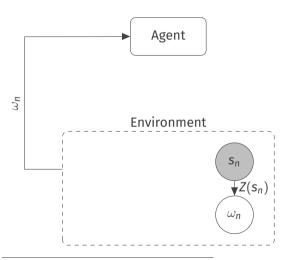


POMDP DEFINITION

A POMDP is defined by a tuple (\mathbb{S} , \mathbb{A} , P, Ω , Z, c).

- Patient condition $s = (m, k, \zeta, u) \in S$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function P(s'|s, a);
- Observation $\omega = (k, \mathit{F}(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Observation function $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

⁸Partially Observed Markov Decision Process

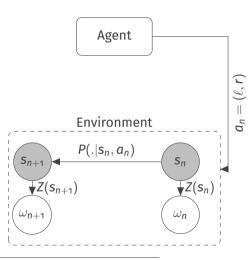


POMDP DEFINITION

A POMDP is defined by a tuple (\mathbb{S} , \mathbb{A} , P, Ω , Z, c).

- Patient condition $s = (m, k, \zeta, u) \in S$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function P(s'|s, a);
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Observation function $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

⁸Partially Observed Markov Decision Process



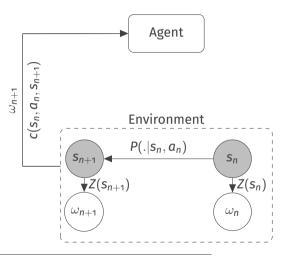
POMDP DEFINITION

A POMDP is defined by a tuple (\mathbb{S} , \mathbb{A} , P, Ω , Z, c).

- Patient condition $s = (m, k, \zeta, u) \in S$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function P(s'|s, a);
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- **Observation function** $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

The transition function P(s'|s,a) is a combination of PDMP local characteristics.

⁸Partially Observed Markov Decision Process



POMDP DEFINITION

A POMDP is defined by a tuple (\mathbb{S} , \mathbb{A} , P, Ω , Z, c).

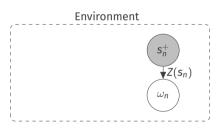
- Patient condition $s = (m, k, \zeta, u) \in S$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function P(s'|s, a);
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Observation function $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

The transition function P(s'|s,a) is a combination of PDMP local characteristics.

⁸Partially Observed Markov Decision Process

Handle uncertainty with Bayesian framework

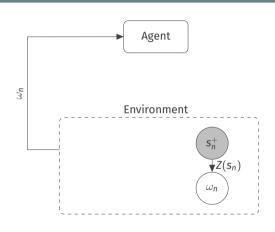
Normal-Inverse-Gamma(Θ) prior patients



BAPOMDP DEFINITION

- Space of hyperstate $\mathbb{S}^+ = \mathbb{S} \times \Theta$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function $P^+(s', \theta'|s, a, \theta)$;
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
 - Observation function $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

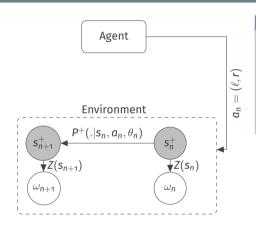
⁹Bayes Adaptive Partially observed Markov decision process



BAPOMDP DEFINITION

- Space of hyperstate $\mathbb{S}^+ = \mathbb{S} \times \Theta$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function $P^+(s', \theta'|s, a, \theta)$;
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Observation function $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

⁹Bayes Adaptive Partially observed Markov decision process

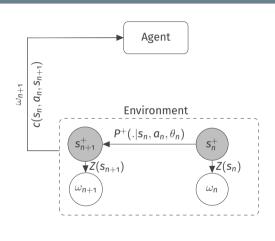


BAPOMDP DEFINITION

- Space of hyperstate $\mathbb{S}^+ = \mathbb{S} \times \Theta$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function $P^+(s', \theta'|s, a, \theta)$;
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Observation function $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

$$\begin{split} P^+\big((s',\theta') \in B_E \times B_\Theta \mid (s,\theta),a\big) \\ &= \int_B \, \mathbf{1}_{B_\Theta} \mathcal{U}(\theta,s,a,s') \times P(ds' \mid s,a,\theta). \end{split}$$

⁹Bayes Adaptive Partially observed Markov decision process



BAPOMDP DEFINITION

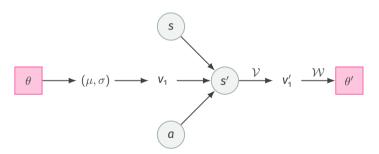
- Space of hyperstate $\mathbb{S}^+ = \mathbb{S} \times \Theta$;
- Actions $a = (\ell, r) \in \mathbb{A}$;
- Transition function $P^+(s', \theta'|s, a, \theta)$;
- Observation $\omega = (k, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Observation function $Z(\omega|s)$;
- Cost function $c : \mathbb{S} \times \mathbb{A} \times \mathbb{S} \to \mathbb{R}$.

$$\begin{split} P^+\big((s',\theta') \in B_E \times B_\Theta \mid (s,\theta),a\big) \\ &= \int_{B_\sigma} \mathbf{1}_{B_\Theta} \mathcal{U}(\theta,s,a,s') \times P(ds' \mid s,a,\theta). \end{split}$$

⁹Bayes Adaptive Partially observed Markov decision process

Generate transition from prior

$$\mathcal{U}(\theta, s, a, s') = \mathcal{W}(\theta, \mathcal{V}(s, a, s')),$$



Identify an optimal policy π^{\star}

$$\underbrace{ c(s, a, s')}_{\text{Cost function}} = \underbrace{ c_V}_{\text{visit cost}} \\ + \underbrace{ c_D(H - t') \times \mathbb{1}_{m' = 3}}_{\text{death cost}} \\ + \underbrace{ \kappa_C \times r \times \mathbb{1}_{\ell = a}}_{\text{treatment cost}}$$

¹⁰Bayes Adaptative Partially Observable Markov Decision Process

Identify an optimal policy π^{\star}

$$\underbrace{V(\pi, \mathbf{S})}_{\text{Optimization criterion}} = \underbrace{\mathbb{E}_{\mathbf{S}}^{\pi} [\sum_{n=0}^{H-1} c(S_{n-1}, A_n, S_n)]}_{\text{Expected total cost as a result of the policy } \pi}$$

¹⁰Bayes Adaptative Partially Observable Markov Decision Process

Identify an optimal policy π^{\star}

$$\underbrace{V(\pi, \mathbf{S})}_{\text{Optimization criterion}} = \underbrace{\mathbb{E}_{\mathbf{S}}^{\pi} [\sum_{n=0}^{H-1} c(S_{n-1}, A_n, S_n)]}_{\text{Expected total cost as a result of the policy } \pi}$$

$$\underbrace{V^*(s)}_{\text{Value function}} = \underbrace{\min_{\pi \in \Pi} V(\pi, s)}_{\text{Minimisation across policy space}}$$

¹⁰Baves Adaptative Partially Observable Markov Decision Process

Identify an optimal policy π^*

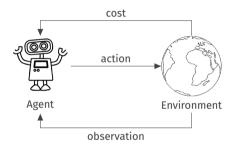
In reality, we do not observe state space!

Let $h_n = (\omega_0, a_0, \omega_1, a_1, \dots, \omega_n)$ be the history

$$\underbrace{V^{\star}(h)}_{\text{Value function}} = \underbrace{\min_{\pi \in \Pi} V(\pi, h)}_{\text{Minimisation across policy space.}}$$

¹⁰Bayes Adaptative Partially Observable Markov Decision Process

Reinforcement Learning



The optimal policy is obtained from the experiments $<\omega,a,\omega',c>$, generated from P^+ transition function

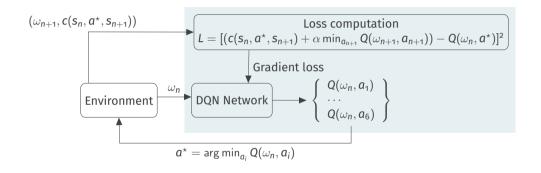
$$\underbrace{Q^{\pi}(s,a)}_{\text{Q value}} = \underbrace{\mathbb{E}^{\pi}[\sum_{n=0}^{H-1}c(S_{n-1},A_n,S_n)|s,a=(\ell,r)]}_{\text{Value of an action in a state according to the policy }\pi}$$

$$\underbrace{Q^{\star}(s,a)}_{\text{O function}} = \min_{\pi \in \Pi} Q^{\pi}(s,a)$$

$$\underline{A(s,a)} = \underline{Q(s,a) - V(s)}$$

Advantage function Extra cost obtained by the agent by taking the action

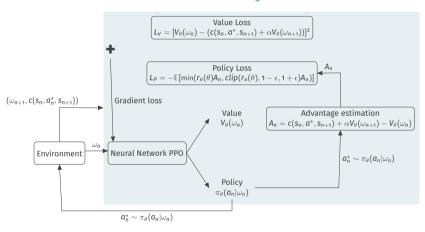
Algorithm example: DQN¹¹



¹¹Deep Q-Network

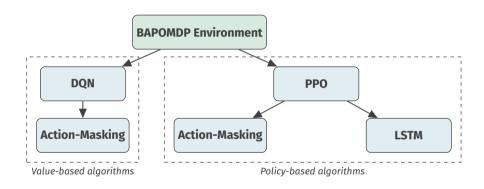
Algorithm example: PPO¹²

Agent

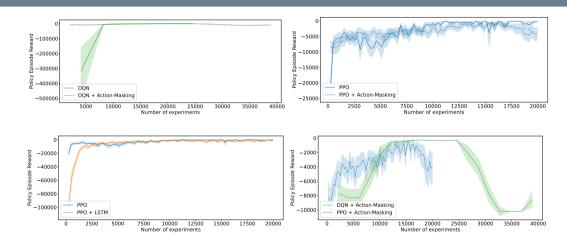


¹²Proximal policy optimization

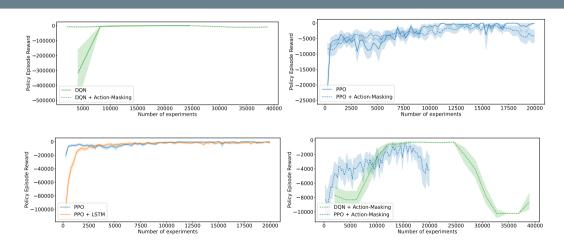
Algorithms Benchmark



Results

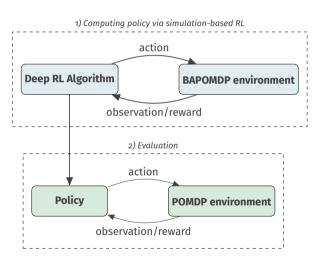


Results



⇒ DQN with Action-Masking outperformed all baseline algorithms.

Evaluate BAPOMDP framework



Prior	$(\mu_{o}, \kappa_{o}, \alpha_{o}, \beta_{o})$
$\theta_{\sf weak}$	(1, 0.001, 1.01, 1)
$ heta_{\sf medium}$	(-6.785, 5.001, 3.51, 1)
θ_{high}	(-6.23, 10, 6.01, 1)

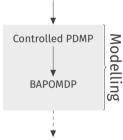
Evaluate BAPOMDP framework

What would happen if we modeled the unknown parameter v_1 as a fixed Normal–Gamma random variable in a POMDP?

Prior	BAPOMDP	Non-adaptive POMDP
θ_{weak}	$-$ 5.74 \pm 0.00	$-$ 5.70 \pm 0.00
$ heta_{medium}$	$-$ 5.66 \pm 0.00	$-$ 5.97 \pm 0.00
$ heta_{high}$	$-$ 5.76 \pm 0.00	$-$ 5.45 \pm 0.00

Conclusion

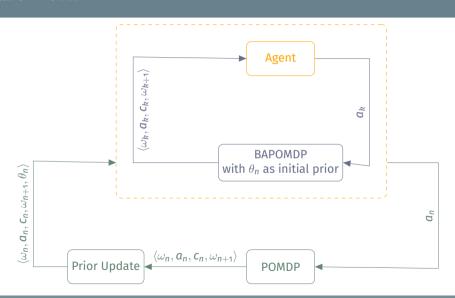
Simplified real-life problem



Deep Reinforcement Learning

- Bayes-adaptive method to address the PDMP control problem
- Comparable test-time performance to non-adaptive models
- No estimates of unknown parameters

Future work



Policy behavior indicators

Table: Summary of policy behavior indicators based on 5 000 Monte-Carlo simulations.

Indicator	PPO with AM	DQN with AM
Survival rates	99.80 $\%\pm$ 0.00	99.70 $\% \pm$ 0.00
Average number of treatment	19.99 \pm 0.00	19.99 \pm 0.01
Average time spend under treatment	1199.63 \pm 00.04	1199.56 \pm 0.05
Average number of visit	58.99 ± 0.01	$\textbf{38.99} \pm \textbf{0.01}$
Average delay between two visits	$\textbf{40.00} \pm \textbf{0.00}$	$\textbf{60.00} \pm \textbf{0.00}$
Rate of visits occurring within 15 days	$\textbf{0.01} \pm \textbf{0.00}$	$\textbf{0.00} \pm \textbf{0.00}$
Rate of visits occurring within 30 days	66.66 ± 0.17	$\textbf{0.00} \pm \textbf{0.00}$
Rate of visits occurring within 60 days	33.33 ± 0.17	100 \pm 0.00